10 research outputs found

    A Thioredoxin Domain-Containing Protein Interacts with Pepino mosaic virus Triple Gene Block Protein 1

    Get PDF
    Pepino mosaic virus (PepMV) is a mechanically-transmitted tomato pathogen of importance worldwide. Interactions between the PepMV coat protein and triple gene block protein (TGBp1) with the host heat shock cognate protein 70 and catalase 1 (CAT1), respectively, have been previously reported by our lab. In this study, a novel tomato interactor (SlTXND9) was shown to bind the PepMV TGBp1 in yeast-two-hybrid screening, in vitro pull-down and bimolecular ïŹ‚uorescent complementation (BiFC) assays. SlTXND9 possesses part of the conserved thioredoxin (TRX) active site sequence (W__PC vs. WCXPC), and TXND9 orthologues cluster within the TRX phylogenetic superfamilyclosesttophosducin-likeprotein-3. InPepMV-infectedandhealthyNicotianabenthamiana plants,NbTXND9mRNAlevelswerecomparable,andexpressionlevelsremainedstableinbothlocal and systemic leaves for 10 days post inoculation (dpi), as was also the case for catalase 1 (CAT1). To localize the TXND9 in plant cells, a polyclonal antiserum was produced. PuriïŹed α-SlTXND9 immunoglobulin (IgG) consistently detected a set of three protein bands in the range of 27–35 kDa, in the 1000 and 30,000 g pellets, and the soluble fraction of extracts of healthy and PepMV-infected N. benthamiana leaves, but not in the cell wall. These bands likely consist of the homologous protein NbTXND9 and its post-translationally modiïŹed derivatives. On electron microscopy, immuno-gold labellingofultrathinsectionsofPepMV-infectedN.benthamianaleavesusingα-SlTXND9IgGrevealed particle accumulation close to plasmodesmata, suggesting a role in virus movement. Taken together, this study highlights a novel tomato-PepMV protein interaction and provides data on its localization in planta. Currently, studies focusing on the biological function of this interaction during PepMV infection are in progress

    Characterization of <i>Prunus Necrotic Ringspot Virus</i> and <i>Cherry Virus</i> A Infecting Myrobalan Rootstock

    No full text
    Prunus necrotic ringspot virus (PNRSV) and cherry virus A (CVA) are two viruses that mainly infect plants of the genus Prunus. Full-length sequences of these two viruses, collected in the Czech Republic from Prunus cerasifera plants, were obtained via HTS sequencing. Phylogenetic analyses based on the NJ method and Splitstree tools showed that the Czech PNRSV isolate (ON088600-ON088602) is a divergent isolate from other molecular groups, sharing less than 97% pairwise nucleotide identity with members of other groups. The Czech CVA isolate (ON088603) belonged to molecular subgroup III-2, clustered with isolates from non-cherry hosts, and shared the highest pairwise nucleotide identity (99.7%) with an isolate of Australian origin

    DNA as a Next-Generation Biomonitoring Tool of Hospital Effluent Contamination

    No full text
    A DNA biosensor based on a modified gold electrode with a Au/cysteine/DNA matrix was developed for ultratrace determination of genotoxicity antibiotics. The modified Au/cysteine/DNA electrode was characterized by cyclic voltammetry and impedance spectroscopy methods. The interaction between immobilized DNA and genotoxicity antibiotics in hospital wastewater was investigated using differential pulse voltammetry (DPV) technology. Using this technique, ciprofloxacin and ofloxacin were detected in real time in the hospital wastewater (HW) of the Tunisian cities of Gabes, Tozeur, Sfax, and Gbeli. In addition, physicochemical parameters such as the chemical oxygen demand (COD), biological oxygen demand (BOD), and total organic carbon (TOC) of HW samples that may affect the nature of the samples were studied. Comet assay (single-cell gel electrophoresis) was performed to measure the capacity of xenobiotics to induce DNA damage. In our conditions, this test indicated that all tested wastewater was able to alter cell integrity and cause DNA molecular damage, and the most genotoxic effect was found in the wastewater of Gabes hospital. Results show that the concentrations of the two antibiotics reached 33 and 40 ng/mL in the hospital wastewater of Gabes and Tozeur, respectively. The DNA biosensor based on the modified gold electrode exhibited superb performance and offers a probable application for the detection of genotoxicity antibiotics in hospital wastewater. The level of genotoxicity is proportional to the concentration of antibiotics detected in hospital wastewater. We will explore the application of this model for continuous monitoring downstream of hospital discharge and wastewater treatment plants for effective control of the presence of genotoxic products

    Characterization of Probiotic Properties of <i>Lacticaseibacillus paracasei</i> L2 Isolated from a Traditional Fermented Food “Lben”

    No full text
    Lben is a dairy fermented food that is largely consumed in Tunisia for its numerous health benefits that are related to the existence of probiotics. Lactic Acid Bacteria (LAB) are well known for their beneficial probiotic properties for humans, especially when administered in adequate amounts. The aim of this study was to isolate and investigate the probiotics properties of Lacticaseibacillus paracasei L2 from Lben. The isolated strain was identified by 16S r-RNA gene sequences and MALDI- TOF MS. To evaluate the probiotic potential of the isolated bacterium, in vitro tests were performed, including adhesion ability to HCT-116 cells, survival in acid and bile salt conditions, lysozyme resistance, biofilm formation, hemolytic activity, antioxidant activity, and antimicrobial activity. Our results revealed that the selected Lacticaseibacillus paracasei L2 strain expressed a high adherence to HCT-116 cells (45.03%), survived under acidic conditions (pH3), and showed a resistance to bile salts. The strain was considered as safe (α-hemolysis). L. paracasei L2 showed a high biofilm-formation ability (OD 570 > 1.7) after 24 h of incubation. It also demonstrated an important antioxidant activity in the range of 85.31% for the intact cells. However, an antimicrobial activity against pathogens, namely Staphylococcus aureus, was detected with an IZ that was above 19 mm. In conjunction with the results obtained and the technological properties of Lacticaseibacillus paracasei L2 (proteolytic property, autolytic activity, acidifying activity, and EPS production), this strain may be used as a probiotic for manufacturing fermented foods

    Inflammatory breast cancers in Tunisia and France show similar immunophenotypes

    No full text
    International audiencePurpose: Inflammatory breast cancers (IBC) have specific immunophenotypic profiles as compared to non-inflammatory (non-IBC): combined differential expression of estrogen receptor, Ki67, E-cadherin, MUC1, and ERBB2 can be used as an IBC signature. It is thought that IBC occurs with a high frequency in Tunisia. The aim of this study is to evaluate this signature on a Tunisian series. Methods: The expression of five proteins (E-cadherin, ERBB2, estrogen receptor, Ki67, MUC1) was studied by immunohistochemistry on a consecutive series of 91 cases of IBC (T4D) treated at Tunisian Salah Azaiz Institute (ISA) and deposited in a tissue microarray (TMA). Results were compared to the same study on a series of 85 cases treated in France. Results: The ISA cases were characterized by a significantly younger age of patients (median: 42 years old in ISA for 53.5 in IPC, p = 0.00042) and a higher frequency of invasive micropapillary pattern. None of the five parameters was expressed differentially in the two series. In non-metastatic patients, high level of proliferation (Ki67) and overexpression of ERBB2 were associated with poor outcome. Conclusion: The IBC from Tunisia were not different from those observed in France on the basis of IHC profiles. However, the younger age of the patients suggest a specific epidemiological context that should be investigated. (C) 2007 Elsevier Ltd. All rights reserved

    A Thioredoxin Domain-Containing Protein Interacts with Pepino mosaic virus Triple Gene Block Protein 1

    No full text
    Pepino mosaic virus (PepMV) is a mechanically-transmitted tomato pathogen of importance worldwide. Interactions between the PepMV coat protein and triple gene block protein (TGBp1) with the host heat shock cognate protein 70 and catalase 1 (CAT1), respectively, have been previously reported by our lab. In this study, a novel tomato interactor (SlTXND9) was shown to bind the PepMV TGBp1 in yeast-two-hybrid screening, in vitro pull-down and bimolecular ïŹ‚uorescent complementation (BiFC) assays. SlTXND9 possesses part of the conserved thioredoxin (TRX) active site sequence (W__PC vs. WCXPC), and TXND9 orthologues cluster within the TRX phylogenetic superfamilyclosesttophosducin-likeprotein-3. InPepMV-infectedandhealthyNicotianabenthamiana plants,NbTXND9mRNAlevelswerecomparable,andexpressionlevelsremainedstableinbothlocal and systemic leaves for 10 days post inoculation (dpi), as was also the case for catalase 1 (CAT1). To localize the TXND9 in plant cells, a polyclonal antiserum was produced. PuriïŹed α-SlTXND9 immunoglobulin (IgG) consistently detected a set of three protein bands in the range of 27–35 kDa, in the 1000 and 30,000 g pellets, and the soluble fraction of extracts of healthy and PepMV-infected N. benthamiana leaves, but not in the cell wall. These bands likely consist of the homologous protein NbTXND9 and its post-translationally modiïŹed derivatives. On electron microscopy, immuno-gold labellingofultrathinsectionsofPepMV-infectedN.benthamianaleavesusingα-SlTXND9IgGrevealed particle accumulation close to plasmodesmata, suggesting a role in virus movement. Taken together, this study highlights a novel tomato-PepMV protein interaction and provides data on its localization in planta. Currently, studies focusing on the biological function of this interaction during PepMV infection are in progress
    corecore